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On Constructing an Explicit Algebraic Stress Model Without 
Wall-Damping Function 

N o m a  P a r k  and  J u n g  Y u l  Yoo*  

School o f  Mechanical and Aerospace Engineering, Seoul National University, Seoul 151- 742, Korea 

In the present study, an explicit algebraic stress model is shown to be the exact tensor 

representation of algebraic stress model by directly solving a set of algebraic equations without 

resort to tensor representation theory. This repeals the constraints on the Reynolds stress, which 

are based on the principle of  material frame indifference and positive semi-definiteness. An a 

priori test of the explicit algebraic stress model is carried out by using the DNS database for a 

fully developed channel flow at Met = 135. It is confirmed that two-point  correlation function 

between the velocity fluctuation and the Laplacians of the pressure-gradient i s anisotropic and 

asymmetric in the wal l -normal  direction. Thus, a novel composite algebraic Reynolds stress 

model is proposed and applied to the channel flow calculation, which incorporates non-local  

effect in the algebraic framework to predict near-wall  behavior correctly. 
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:Transpor t+d i f fus ion  in the turbulent 

1 
kinetic energy equation, ~-D~i 

Derivative following the mean flow, 

3 
0~- + g '°~ 

l - -  
Turbulent kinetic energy, ~u~u~ 

Correlation length scale for elliptic re- 

laxation model 

: Correlation length scale tensor in asym- 

metric elliptic model, Eq. (30) 

: Rate of production of turbulent kinetic 

1 
energy, ~-Pa. 

: Rate of production of Reynolds stress, 

0Us 0~ 

Hydrodynamic pressure 
Reynolds number based on friction ve- 

UrC~ locity and channel half width, - -  /J 

Mean strain rate tensor, 

1 3Ui , OUs \ 
~( ~7  ~ - ~  ) 

: New turbulence time scale, Eq. (12) 
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T~s Turbulent transport term, 

3 (U~Usuk+pu~Ssk+pusS~) 
8X, 

Ui Mean velocity components, (U,  V, W) 

u~ Fluctuating velocity components, (u,  v, 

w) 
uius Reynolds stress components 

W~j W Mean rotation rate tensor, 

3xs ~x, ) 
x~ Cartesian coordinates, (x, y,  z) 

x ' - - x  Separation vector in two-point  correla- 

tions, Eqs. (18) and (19) 

y+ : Dimensionless wall normal distance, 

zlr y 
IJ 

Greek symbols 
a : Coefficient in dissipation rate aniso- 

tropy model, Eq. (23) 

: Channel half width 

~is, I : Kronecker delta 

e~s : Rate of dissipation of Reynolds stress, 

2v(  Oui aus 
3xh 3xh ) 

e Rate of dissipation of turbulent kinetic 

I 
energy, ~-e~. 

~i~ Pressure-strain correlation, 

p/ ~U~ , 8 u s \  

~b~s Velocity-pressure correlation, or redis- 

i~ Op_ ~p \ 
tributive term, - -~  u i ~  u s ~ ;  

p OXj Oxi / 

v, Vr Molecular viscosity and eddy viscosity 

I1~, I I  Traceless redistribution tensor, ffi~-n¢~ 

p Fluid density 

o" Amplitude of strain rate, 

0"h, 0"e Coefficients in k - ¢  model, Eqs. (14) 

and (15) 

k r Large time scale of turbulence, - -  

Subscripts 
n( )~s : Deviatoric tensor operator, 

( ) ~ s - 3  ( )~,8,~ 

Superscripts 
DNS : DNS data 

( ) 

( )+ 

( )* 

Reynolds-averaged value 

Wall unit, u~( ) 

Non-dimensional  quantities introduced 

by Gatski & Speziale (1993), Eq. (6) 

Homogeneous solution of  PDE, Eqs. 

(21) and (22) 

Symbols 
It'll : vector  norm 

I1~ : Second invariant of a generic tensor ~bis, 

111~ : third invariant of  a generic tensor ~b~, 

I. In troduc t ion  

Since the earliest stage of turbulence modeling, 

it is believed that one-point  correlations of ve- 

locity fluctuation components, or the Reynolds 

stress tensor, can be simply modeled in terms of 

the mean-velocity gradient and some dimensional 

scalars which describe scales of turbulent flows. 

The k - e  model based on simple eddy viscosity 

assumption is the first name that appears in the 

hierarchy of this kind of models. Another ap- 

proach is to solve all the transport equations for 

the Reynolds stress components. 

Although it has been long since Launder et al. 

(1975) closed second-order moment equations, 

this approach has not been adopted as a major 

engineering tool in predicting complex flows, 

since it is too tough to solve five addit ional 

transport equations for the Reynolds stress clo- 

sure, which do not necessarily give exact solutions 

even for simple flows. Rodi (1976) proposed an 

assumption using local equilibrium hypothesis 

which yields a set of  algebraic equations for the 

Reynolds stress tensor, say "Algebraic (Rey- 

nolds) Stress Model ( A S M ) ' .  However, inver- 
sion of a 6 × 6  matrix at every grid point and 

every time step is by no means cheaper than 

solving full transport equations. Pope (1975) and 

Gatski & Speziale (1993) showed that an exact 

explicit solution of  ASM can be obtained by 

using tensor representation theory. This approach 
was entitled "Explicit Algebraic Stress Model 
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(EASM)" and is regarded as a systematic and 

unified approach between nonlinear eddy vis- 

cosity model (NLEVM) and ASM. However, 

Wang (1997) (abbreviated as W97 hereinafter), 

criticized it in the light of the principle of ma- 

terial frame indifference (PMFI) and the positive 

semi-definiteness by showing that the Reynolds 

stress tensor can be influenced by the mean-ve- 

locity gradient only through the strain rate tensor. 

In this study, the basic hypothesis of EASM, 

i.e., tensor representation theorem by Smith 

(1971), is reconsidered by comparing the results 

obtained by EASM with those obtained by a 

direct inversion of algebraic equations of ASM. 

Anyhow, some modification to the original model 

is inevitable for wall-bounded flow applications, 

because the model is totally invalid in the viscous 

sublayer. The linear model for the pressure-strain 

has no wall-reflection or viscous effects and the 

assumption of isotropic dissipation becomes un- 

tenable in the viscous sublayer. The extant low- 

Reynolds number modifications of EASM (Aps- 

ley & Leschziner, 1998; Wallin & Johanson, 

2000) are made only in the empirical manner. 

They adopted damping functions in terms of wall 

distance and constants calibrated by curve-fitting 

to a specific DNS data. However, such a modifica- 

tion of the model is not pursued in this study 

obviously because little generality is expected to 

be obtained through such methodologies. An 

alternative approach is required to obtain a sys- 

tematic low-Reynolds-number modification with 

sufficient generality. It is not a straightforward 

procedure to combine different time and length 

scales into a framework without damping func- 

tions. Readers may refer to Hanjalic (1994) and 

Wallin & Johanson (2000) and references cited 

therein for more comprehensive understanding 

of NLEVM, ASM and EASM. However, Durbin 

(1991) made it possible to integrate scale equa- 

tions down to the wall without wall-damping 

functions by introducing new time and length 

scales in his k - e - v  2 model at the cost of increased 

number of empirical constants, which are incor- 

porated with an elliptic relaxation procedure to 

represent strongly non-homogeneous effects pro- 

duced by the presence of the wall. The applica- 

bility of this novel concept to the algebraic stress 

model is investigated in this study. 

On the other hand, the most annoying feature 

of developing and validating a turbulence model 

lies in full coupledness and nonlinear interaction 

between the mean and the turbulence equations. 

Therefore, some variables should be fixed, al- 

though simple substitution of the DNS data into 

algebraic formulas, as is used by most authors 

(for example, Mansour et al., 1988) gives no in- 

formation on the mathematical and computa- 

tional properties of a turbulence model. Parneix 

et al. (1998) introduced a new "differential a 

priori test", which consists in freezing some 

variables for which the DNS statistical fields are 

used and solving differential equations for the 

others. This approach enables one to construct a 

complete one-way coupling system for the equa- 

tion of interest. A similar methodology using the 

DNS database is adopted in constructing a new 
ASM. 

The objectives of this study are as follows : 

1. To investigate the validity of the EASM, 

which will also provide a counter-example 

for PMF1 and the proposal due to W97. 

2. To verify the concept of elliptic relaxation 

procedure in the low-Reynolds number 

flow. 

3. To propose a new composite EASM which 

incorporates inhomogeneous effect via the 

elliptic relaxation procedure. 

This paper is organized as follows. First, 

EASM is outlined and the validity of the model is 

investigated, followed by some comments on the 

argument of W97. Next, some results on an a 

priori test for EASM and scale equations are 

presented. Then, closure models for non-homo- 

geneous redistribution and dissipation rate ani- 

sotropy are introduced. In the penultimate sec- 

tion, a new composite algebraic stress model and 

its solution techniques are proposed including 

some illustrative calculation results. Finally, gen- 

eral conclusions and key findings are summarized 

in the last section. 
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2. Channel Flow Database 

There are several works on the establishment of 

the DNS database (e.g., Kasagi et al., 1992; 

Moser et al., 1998), which supply complete statis- 

tics for a fully developed channel flow at various 

Reynolds numbers. However, an independent 

channel flow DNS is performed by the authors as 

some complicated statistics are required in this 

study such as two-point correlations of the ve- 

locity and the pressure gradient, which are not 

included in the available DNS database. 

In the present channel flow DNS, Re.~ = 135 is 

chosen because this Reynolds number belongs to 

the lowest level of maintaining turbulence in 

which near-wall structure covers a large portion 

of the domain so that the flow can be a severe test 

case for high-Reynolds number models. The 

simulation code employed finite difference for 

spatial derivatives, and a semi-implicit scheme for 

time integration (Choi et al., 1993; Choi and 

Moin, 1994; Choi et al., 1994). The flow was 

computed on a grid of 97× 145× 145 points in the 

streamwise (x), wall-normal (y), and spanwise 

(z) directions, respectively. The computational 

domain is of a 7 a × 2 ~ × 3 . 5 ~  size in the x, y, 

and z directions, where ~ denotes the channel 

half-width. This yields ,dx+~10 and ,dz+~3.3, 

which are sufficient enough to resolve most of the 

scales accurately. Although the simulation uses a 

2nd-order central difference scheme on the stag- 

gered mesh, all spatial derivatives used in the 

post-processing of the data adopt 6th-order com- 

pact differences (Lele, 1992) in conjunction with 

5th-order boundary closures in the wall-normal 

direction and weighted (filtered) 4th-order cen- 

tral differences (Vreman et al., 1996) in the homo- 

geneous directions. This combination of differ- 

ence schemes is chosen because it is free from 

odd-even decoupling, and thus prevents scat- 

tering of processed data while maintaining high 

accuracy. This property is important because suc- 

cessive differentiation is required to obtain higher 

order correlations and terms in each budget equa- 

tion are directly utilized in constructing algebraic 

expressions for the Reynolds stresses. Figures 1 
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Fig. 1 Comparison and validation of the present 
channel flow DNS with other DNS results at 

comparable Reynolds numbers 

(a) and 1 (b) show mean streamwise velocity and 

balances in the budget of turbulent kinetic energy 

from the present DNS. Those from other DNS 

databases at Reynolds numbers of _Re~=100 

(Kuroda et al., 1989 ; Kuroda, 1990), R e r = 1 8 0  

and Re~=395 (Moser et al., 1998) are also 

shown to check the adequacy of averaging field as 

well as the present DNS results. It is shown that 

the statistics from the present DNS are as accurate 

enough as those from other database. 

3. Validation of  E A S M  

In this section, the procedure of deriving 

EASM is outlined, based on the model of Gat- 
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ski & Speziale (1993, denoted as GS-EASM, 

hereinafter), followed by the validation of the 

model for the channel flow by directly comparing 

the solutions of EASM and ASM. 

The Reynolds stress tensor is a solution of the 

transport equation : 

D u~uj = Pu + Du + O u -  eu ( I ) 
Dt  

where Pu denotes production, ¢,.j is the pres- 

sure-strain, eu is the dissipation, and Du---- Tu+ 
uVauiu~ is the turbulent transport plus the 

viscous diffusion. Note that the system rotation is 

not considered here for simplicity. Homogeneous 

turbulent flows in equilibrium, as well as regions 

of inhomogeneous turbulent flows, where there is 

a production-equal-to-dissipation equilibrium, 

satisfy the constraints : 

D ~ ~ u ~ u s / D k  ~ \ 
Dt  u ~ u j - - w i s ~  D t  --wk ) 

(2) 
- -  U i T A j  

k ( P - e )  

Eq. (2), in conjunction with Eq. (1), leads to a 

set of algebraic equations for the Reynolds stress 

tensor : 

( P - e )  mus 8Us 8U~ k - UiUh~- -UsUk  3x~ 
(3) 

2 
+ fLs-Te&s 

Dissipation rate anisotropy models (Speziale 

and Gatski, 1997 ; Hallback et al., 1990) can also 

be incorporated in constructing Eq. (3), which 

will be discussed later. Rearranging Eq. (3) in 

terms of the strain rate tensor Su and the rotation 

rate tensor Wu for the inertial frame, and the 

anisotropy tensor bo gives an alternate form : 

(P-e) b,,:-2kS,Fk(be, S.+b.Se,-2b,=S=&,) 
(4) 

+~II,~-k(b~,W~, + b,~W~) 

where the pressure-strain term including the de- 

viatoric part of the dissipation remains as the only 

unclosed term. It is necessary t h a t / / u  should be a 

linear function of an anisotropic tensor to make 

Eq. (4) an algebraic set. Therefore, only linear 

models can be incorporated to realize this, which 

is one of the main drawbacks of ASM. The model 

of Launder et al. (1975, denoted as LRR, 

hereinafter) or Speziale et al. (1991, SSG) may be 

the possible candidate, which is given by 

1-Ls= - C, ebu + C2kSu 
2 +C3k(bikSj~+bjhSo,-~-b=nSmn&j) (5) 

+ C4k ( b~ W~k + bsk Wo,) 

where model coefficients Ci are either constants 

or functions of nondimensional scalars such as 

/-/b, which are listed in Table 1 for the SSG 

model. Substituting such a linear model in Eq. 

(4) completes ASM. The explicit solution to Eq. 

(4), EASM, takes the form : 

b,? =Cd S* + (S~ W;o + S,~ W;, ) 
l , , - 2 (  Si~S~.i-~S~Sn,&j)} (6) 

where 

b* / c3-2 \b c~=( 2 -, i . / :  | - - ~ |  ii, -- 1 "}- ~-r]l+ 2 riz) 

. 1 . l Su=~gr(2-Ca)Su,  WJ = ~ g r ( 2 - C ~ )  Wo (7) 

~, = S* S;,  ~2 = W,s* IV? 
1 - 1  

Eq. (6) is valid for two-dimensional mean flows. 

See Gatski & Speziale (1993) for an extension of 

EASM to three-dimensional mean flows. For 

different versions of EASM, see also Taulbee 

(1992) which includes nonlocal convection ef- 

fects, and Wallin and Johanson (2000) which 

gives a fully explicit solutions, respectively. 

The simplest way to check whether EASM is 

the exact solution of ASM is a direct inversion 

of Eq. (4) without appealing to Smith's represen- 

tation theory followed by comparison of the 

results with Eq. (6). Actually, the application of 

tensor representation theory lies in the center of 

controversy, as mentioned above. Thus, this pro- 

cedure will also verify the validity of the repre- 

sentation with the strain rate and the rotation rate 

tensors as the independent basis tensors. A gener- 

al algebraic set yields a full, 5×5  matrix by 

invoking zero trace for bo for a point, which 
can be inverted with Mathematica TM (Wolfram, 
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1988). The results are compared with the EASM 

given by Eq. (6), revealing that two models are 

exactly the same at least for two-dimensional 

mean flows, contrary to the implication of W97. 

For example, the analytical solution of Eq. (4) 

to the channel flow problem, which has only one 

non-zero mean-velocity component and inhomo- 

geneous direction, is easily obtained by a direct 

inversion of a 3 × 3 matrix which takes the form : 

- B n  I - = bt2 } = c (8) 

0 - ClZ bzz / 

where 

A 1 2 = G (  2--C33-2C,-I--63 ), B n = G ( C 3 - C , )  

B z z = G ( C s + C 4 - 4 ) ,  B c = G ( C z - 4 ) ( 9 )  

2Cs 2 8 c ,2--G(T- c,+y), l 
The solution to Eq. (8) is 

AlzBc  
b n =  I - A l z B n -  Bz2C12 

Bc ( l O) 
/912-- I - A l z B n -  Bz2C12 

C12Bc 
bz2 = 1 - A I2Bn  - B22 Clz 

bas is automatically given by b s a = -  b n - & 2 .  The 

comparison of b12 terms, for example, shows 

b A S M  _ _  I ~ E A S M  
12 - -  U 1 2  

/ 

This result allows us to reconsider the proposal 

due to W97. Theorem 4 and 5 of W97 that 

provide the main issues regarding FASM are 

summarized as follows: 

Theorem 4. Velocity gradient tensor affects 
uiu~ only through Sij. 

Theorem 5. Each o f  three eigenvectors o f  So  is 
also an eigenvector o f  uiu~. 

These are strictly derived from PMFI. How- 

ever, the fact that EASM is the exact, hence the 

unique, solution of ASM implies that there exists 

no way of eliminating the terms involved in the 

rotation-rate tensor in the expression of um~, 

as far as the Reynolds stress equation is a pre- 

decessor of EASM, by which EASM differs from 

NLEVM. It means that both ASM and EASM 

violate PMFI by Theorem 4, and thus Theorem 5 

of W97. But, it is not surprising because both the 

Navier-Stokes equations and the Reynolds stress 

transport equations come from Newton's second 

law of motion, which are not valid for a non-  

inertial frame of reference. 

Recently, Spalart and Speziale (1999) also 

addressed the issues generated by W97. They 

contradicted Theorem 4 of W97 in that the Rey- 

nolds stress model cannot account for the effect of 

solid body rotation without the inclusion of W,-~. 

They additionally showed through the observa- 

tion of the experiment and DNS data that the 

eigenvectors of u~u~ and S~ do not coincide with 

each other even in simple channel flow, which is 

a counter-example of Theorem 5. In this study, 

we added another counter-example against W97 

and thus against PMFI via  the inspection of 

ASM and EASM. Consequently, it can be con- 

cluded, at odds with W97 and other papers before 

it (Speziale, 1979), that PMFI rapidly leads to 

conflicts with accepted facts, is not a property of 

turbulence, and is not a proper constraint to 

impose on turbulence models. Actually, it seems 

to be one of the redundant constraints originated 

from continuum mechanics, which the Reynolds 

stress does not really satisfy. 

On the other hand, real constraints for the 

Reynolds stress are coordinate invariance and 

Galilean invariance, or the principle of observer 

transformation. Because velocity fluctuation ob- 

eys them, the Reynolds stress tensor also does. 

Recently, Girimaji (1997) reported that EASM 

due to Gatski & Speziale (1993) violates Galilean 

invariance, and it is the cause for poor prediction 

of the rotating channel flow. This specific issue 

needs further investigation and will be the topic 

of our future research. 

4. An a Priori Test  of  E A S M  and 

Scale  Equations 

In this section, the original EASM is critically 
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(c) Anisotropy invariant map for bij at various y+ in 

the channel 

Fig. 2 An a priori test of EASM in comparison with 
the DNS database 

evaluated on the channel flow followed by the 

evaluation of the model performance of scale 

equations via the methodology due to Parneix et 

al. (1998). 
Figure 2(a) shows a typical result of an a 

priori test of model prediction of ASM/EASM 

without modification as well as empirically fitted 

results which will be discussed later in this sec- 

tion. This test is necessary to get information on 

the direction of improvement. Mean velocity, pro- 

duction, turbulent kinetic energy, and dissipation 

rate are given by the DNS data for this test. The 

model gives acceptable results far from the wall, 

whereas it does not reproduce a correct near- 

wall behavior at all, especially for v 2, predicting 

negative values in the viscous sublayer. Two 

major reasons may be given for this discrepancy, 

which are equilibrium hypothesis itself and over- 

prediction of the pressure-strain term in the log 

layer, since the EASM is derived on the basis of 

homogeneous flows excluding any inhomogeneity 

such as the presence of the wall. For the first 

attempt to improve model prediction based on ad 

hoc empiricism, the coefficients for the pressure- 

strain model is tuned. This procedure can be 

justified by invoking the fact that these are ori- 

ginally calibrated regarding homogeneous shear 

flows. Time scale r defined in Eq. (7) has been 

also modified to meet physical constraints by 

introducing the Kolmogorov scale (Durbin, 1991 

and 1993) in a blending form : 

__ k 2 2 V  

where Cr is set to be 6.0. Coefficients for the SSG 

model has been modified such that 

C1=3.4(I + P / s ) ,  G=0.8(1- / - /~ '2 )  (13) 
C3=0.65, C4=0.40 

This modification gives best-fitted results in com- 

parison with the DNS data. However, this proce- 

dure cannot be generalized for complex flows. 

More serious problem lies in predicting the near- 

wall limiting behavior, which is shown in Fig. 2 

(b). All the predicted data show isotropic O (yZ) 
behavior regardless of components. This anomaly 

cannot be corrected without imposing exact limi- 
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ting behavior as the boundary conditions. Figure 

2(c) represents anisotropy invariant map for the 

model and the DNS data. The model prediction 

has no point on the two component line as the 

result of poor prediction of the near-wall limiting 

behavior of the wall-normal velocity component. 

Next, the model behavior for the scale equa- 

tions are also investigated. In the light of the 

methodology given by Parneix et al. (1998), the 

turbulent kinetic energy and dissipation rate 

equations are solved, keeping the production term 

being the same as the DNS data : 

~-xt( -F ~r ~tgk (14) D k  = pDNs e + u ~ 1 3 x ~  
D t  

D e  C~,PDJVs- c~,e t_ O ( u + ur ~ 3e (15) 
O t  T ffXT~ \ ~-~ / 3xz  

where T is the time scale defined by Eq. (12), 

eddy viscosity Vr is given by 

ur = C ,  v 2DNs T (16) 

and C~,=0.2. Other closure coefficients are given 

similar values as in Durbin (1991), which are 

tuned for the channel flow at a higher Reynolds 

number (Re~=395) and are listed in Table 1. 

No-slip condition is imposed on the wall for k 

and the Neumann condition is applied at the 

center of the channel. The boundary condition 

for the dissipation rate is based on total produc- 

t ion-equal-to-dissipation assumption. The model 

predictions compared with the DNS data for k 

and e are shown in Figs. 3(a) and 3(b), where 

the results at R e r = 3 9 5  are also plotted. 

The agreement between the model prediction 

and the DNS data is quite good for both Rey- 

nolds numbers, although the profile of e has a 

wiggle near the wall which is larger than the 

data exhibit. That is, from Fig. 3 (b), we can see 

that the predicted values of e decay faster than 

those from DNS near the wall at both Reynolds 

numbers. This may be due to somewhat small 

correlation length dominated by the Kolmogorov 

time scale near the wall. Therefore, the wiggle 

comes from such a fast decay of e in the viscous 

sublayer in conjunction with the enforced boun- 

dary condition for e by which its integrated value 

in the domain, or the total dissipation, is fixed as 

Table 1 Coefficients in k -e  equation and pres- 
sure-strain model 

0"k=1.3, O't =1.6, Cu=0.2, 
k - e  equation C~,= 1.62, C~ = 1.9 

Cl=3.4+I .8P/e ,  (72=0.8-1.3H~ Iz 
SSG model 

C3 = 1.25, C,=0.4 

.~ ~ =, DNS, Re.~135 
~' ~, I ~ ORS R~.395 I 

k+ 4 ~ 9,,~. ~"~. [ - Eq. (14},' Rer=135 
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(b) Dissipation rate 

Model predictions for a differential a priori 

test of scaling variables 

that from DNS data. The results from Durbin 

(1991)'s channel flow computation at Re~ = 180 

and R e ~ : 3 9 5  also show similar wiggles in the 

profile of e near the wall. Although numerical 

test indicates that a larger value of Cr in Eq. (I 2) 

can cure this erroneous behavior, no further mo- 

dification is tried because Eq. (15) is proven to 

exhibit suffÉcient generality even for more com- 

plex flows, such as the flow over a backward- 
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facing step (Parneix et al., 1998). 

5. Closure for Redistribution and 
Dissipation Rate Anisotropy 

Recently, Manceau et al. (2001) investigated 

the validity of the hypothesis used to model the 

pressure term with elliptic relaxation by using a 

DNS database for the channel flow at Re~=590. 

They showed that the correlation function in- 

volving the fluctuating velocity and the Laplacian 

of the pressure gradient, which is modeled by an 

exponential function, is actually not isotropic. 

They also showed that it is not only elongated in 

the streamwise direction but also asymmetric in 

the wall-normal direction. This feature is con- 

sidered to be the main cause for slight amplifica- 

tion of the redistribution between the Reynolds 

stress components in the log layer as predicted by 

a symmetric operator. The objective of this sec- 

tion is to confirm the observation of Manceau et 

al. (2001) for a lower Reynolds number channel 

flow. 

On the other hand, inspecting the budget in the 

Reynolds stress equation reveals that reproducing 

the limiting behavior of ff~j--eo is crucial in 

predicting the correct behavior of u~u~. In this 

section, the low-Reynolds number models for the 

pressure redistribution and dissipation rate are 

investigated in detail. 

The original velocity-pressure term, which is 

given by ~bi~------l( gljp, iq-Uip,j), is represented 

by using an approximate Green function H. 

pq)ij(x)=- fa(u~(x)V~p,,+ui(x)V2pj)H(x, x')dV(x') (17) 

1 I 
H (x, x') -- 4 

4~" II x ' o - x  II 4 ~  [I x ' _ , - x  tl (18) 
I 

4 
4a" ]l X' l--X l[ 

where the three terms on the right-hand side 

(RHS) of Eq. (18) are the principal, first image 

and second image terms, and x'-~ and x'~ are the 

images ofx'0 in the walls located at y : 0  and y :  

1, respectively. The image terms are often referred 

to as "wall echo" or "wall reflection". Since 

Launder et al. (1975) it has been widely accepted 

that wall echo is responsible for the reduction in 

the amplitude of the energy redistribution be- 

tween components of the Reynolds stress. 

In Eq. (17), two-point correlations between 

the fluctuating velocity and the Laplacians of the 

pressure gradient appear, and they can be 

modeled as (Durbin, 1991) 

un(x)WP, m(X,)=un(x,)V~p,,,,(x,)exp ( IIx'~xll) (19) 

where L is the correlation length scale. The ve- 

locity-pressure is the solution of the following 

Yukawa equation. 

qAi~-- L2V2qbij = - ( ujWp.~ + u~V2p,~ ) (20) 

Durbin proposed to use a quasi-homogeneous 

model such as the LRR model or the SSG model 

instead of the RHS of Eq. (20). This leads to the 

following elliptic relaxation model for ~b~j: 

2 2 _ _  h ~b;~-L V ¢i~--~b~-~ (21) 

Figures 4(a) and 4(b) show terms in the ap- 

proximate Green function H given by Eq. (18) 

for the streamwise and the wall-normal com- 

ponents of the pressure redistribution terms. In 

this figure, we can see clearly that the image terms 

are of the same sign as the principal terms. This 

implies that the image terms actually amplify the 

redistribution, contrary to the common belief on 

the effect of wall echo. This result confirms the 

argument of Manceau et al. (2001) on the channel 

flow at a relatively high Reynolds number. 

Figures. 5 (a) and 5(b) show two-point cor- 

relation functions for the fluctuating velocity and 

the Laplacian of the pressure gradient in the 

streamwise and wall-normal directions, respec- 

tively. For this case, separation distance of the 

correlation for the streamwise and spanwise dir- 

ections is zero. Vertical dotted lines indicate the 

lines of zero separation, i.e., the lines of sym- 

metry. It is shown that the anisotropy between the 

streamwise and wall-normal directions is the 

main characteristic of the correlation functions as 

well as asymmetry. The degree of anisotropy is 

more amplified than the results of Manceau et al. 

(2001) including large negative correlation re- 
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gion for the wa l l -normal  component .  This may 

be the reason why the predictabili ty of the k - e -  
v 2 model gets worse as the Reynolds number  

decreases. 

By considering the asymmetry of  the correlat ion 

function in the wa l l -normal  direction, Manceau 

and Hanjal ic  (2000) proposed an asymmetric 

operator (denoted as MH operator, hereinafter): 

e u -  L W 2 ¢ ~ j - 8 L 3 V L ' V ~ z  =¢h~ (22) 
/.., 

Figure 5 (c) compares elliptic models, symmet- 

ric Yukawa and unsymmetric MH operators for 

the correlation function at y + = 7  and y + = 5 0 .  

This also shows that the unsymmetric model re- 

produces a correct asymmetry in the correlat ion 

y +  
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Fig. 5 Two-point  correlation functions in the pres- 
sure-strain term (vertical dotted lines indicate 
zero separation distance) 

function. However, we can also see that the shape 

of the correlat ion function modeled by both 
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elliptic models are somewhat too simple to re- 

produce all the features of the correlation func- 

tion correctly. 

Figures 6(a) and 6(b) represent the model 

prediction and the DNS data tbr some com- 

ponents of ~ j - - e ~ + ~ e  term, which was used 

by Durbin (1993) to construct the Reynolds stress 

model instead of usual decomposition shown in 

Eq. (3). MH operator generally decays faster than 

Yukawa operator for l l -component .  Thus, Yu- 

kawa operator is in closer agreement with the 

DNS data. However, this does not mean the 

failure of the asymmetric operator because all the 

coefficients for time and length scales are origin- 

ally fitted to symmetric operators. Moreover, the 

homogeneous model is not the exact one-point  

correlation of the velocity fluctuation and the 

Laplacian of the pressure gradient. MH operator 

outperforms Yukawa operator when the asymp- 

totic boundary condition is given at the wall 

(Durbin. 1993) as shown in Fig. 6(b). 

Next, the model for the dissipation rate aniso- 

tropy is considered because the dissipation rate, 

in general, has a strong degree of anisotropy, 

which will be included in the construction of a 

new composite algebraic stress model. The avail- 

able models are due to Speziale & Gatski (1997, 

SG model) and Hallback et al. (1990, HGJ mo- 

del). Although other models, such as the model 

due to Hanjalic and Jakirlic (1993), can be easily 

incorporated, they are not considered here due to 

the dependency of such models on empirical 

functions of the turbulence Reynolds number. In 

fact, only HGJ model is adopted in this study 

because the a priori test results for both models 

using the DNS data reveal that SG model predicts 

surprisingly inaccurate values for the dissipation 

rate anisotropy, whereas the results from HGJ 

model is within an acceptable range. HGJ model 

is given by 

dij=[ l + a( 2bn,,bm,-2 ) ]bu 

l - 2a( b~b~-~bn,nbm,,~u ) 
(23) 

1 
where di~=eij/(2e)-~8u is the dissipation 

rate anisotropy tensor, and a is a free parameter 

which has a lower bound of zero and an upper 

bound of unity to meet physical constraints be- 

tween the stress and dissipation rate anisotropy. 

The original value of a' is 3/4, which comes from 

the RDT analysis of homogeneous shear flow. 

However, the value 1/4 gives a closer agreement 

with the DNS data than the original value (Figs. 

7 (a) and 7(b)) for the normal components. The 

simple approximation e ; j = ~ e ,  i.e., di~=bu, 

which is used by Durbin (1993), is regarded as a 

special case when a = 0 .  It is obvious from Fig. 7 

that the DNS results lie between those obtained 

by a----0 and a = 3 / 4 ,  and an optimal value for a 

exists within this range for the channel flow under 

consideration. 
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Prediction of the dissipation rate components 
with HGJ model 

6. A Novel Composite Stress Model 

In this section, a novel composite algebraic 

stress model is proposed. The key idea is to 

isolate the pressure-redistribution term as an in- 

dependent tensor. This assumption can be justi- 

fied by the fact that the pressure-redistribution 

term is in itself a two-point  correlation, and thus 

it cannot be represented by single point values, 

being independent of the local strain (Su) and 

rotation rate (Wu). A similar approach was ado- 

pted by Adumitroaie et al. (1999) for a com- 

pressible version of EASM by introducing the 

baroclinic dyad tensor composed of the pressure 

and density gradients as the independent tensor. 

The realization of this idea, however, is not 

straightforward due to the following difficulties : 

1. The singularity of a leading coefficient an- 

alogous to g in Eqs. (7) and (9) may occur 

when P ie  approaches unity. This comes 

from the implicit treatment of the redistri- 

bution term, whereas Rotta's return-to-iso- 

tropy constant C~ contained in g prevents it 

in the original EASM. 

2. The introduction of dissipation rate aniso- 

tropy model leads to a nonlinear ASM. 

3. According to the representation theory, the 

presence of three independent tensors, Su, 

IV,.,. and q)u, results in 41 integrity basis 

tensors, which is out of practical range. 

Therefore, no direct inversion nor tensor 

representation can be used to get an EASM. 

Among them, the singularity problem can be 

easily cured by replacing the equilibrium hypoth- 

esis with that proposed by Taulbee (1992). Then, 

Eq. (3) can be written as 

2 k D b u _  u~Uj(p_e)  + P i ~ + ~ u - e u  (24) 
Dt k 

The ASM Eq. (3) is recovered invoking Dbu/  
Dt=O at the equilibrium state. To account for 

nonlocal convective effect, Taulbee (1992) ex- 

panded Dbu/Dt  in the Taylor series with time 

scale (T)  and strain rate ( o . = ~ ) .  For 

small To', the equilibrium condition Dbu/Dt=O 
is approximated by 

D t  

Substitution of Eq. (25) into Eq. (24) and 

rewriting it in basic tensors leads to 

D / b u \  / P  1 DTa\b~. 2 -  

+ 2 -(b~S~ bj, S~-~-bm, S,,~u) (26) 

1 1 -(b~W,~+b,~W~) +~¢)u-~-du 

1 DTa  . 
where the convection term a D ~  is approxi- 

mated by 

1 DTO. T Do. P 
a Dt a Dt  1 - ( C ~ , - 1 ) - ( C ~ , - 1 ) _ _ ( 2 7 )  

Eq. (27) is derived from the k - ¢  equation, Eqs. 

(14) and (15), neglecting diffusion terms and 
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setting T = k / e .  Taulbee (1992) showed that the 

T Da 
term - - D T a  drastically improves the predicta- 

bility of  (E) ASM for time varying, homogeneous 

shear flows. But, for a fully developed channel 

flow it is automatically zero. However, the re- 

maining terms still play an important role in 

preventing the singularity of the leading coeffi- 

cient that is multiplied by b~HT in Eq. (26), 

otherwise the coefficient would be simply P / e -  
l, which must be zero somewhere in the domain. 

An algebraic stress model is achieved by setting 

the LHS of the Eq. (26) zero. Combining closure 

models for the dissipation rate anisotropy and 

substituting Eq. (27) into Eq. (26), a new com- 

posite stress model is constructed, resulting in a 

set of  nonlinear equations : 

1 
b~ = --/~1Si~ + l~2 ( bikb~,'- ~bmnbnm~i~) 

+ 2 (28) 
-t~3(b~S~k bjkSu.- 3-S.,.bm.&j) 

- ~, ( b~, ~ + b~ W~,) + B~H,~ 

2 
where t3~=~-gT, 132=2gct, / ~ s = ~ 4 = g T ,  fls=T/ 

2g, with a = l / 4 ,  Hi~=q)o/k, and T i s  as given 

by Eq. (12). Now, the coefficient g is given by 

g = ( P / e + 2 a H b  2 - - ~ a + w )  -~ (29) 

where w = ( I - C ~ , ) P / e + ( C ~ - I )  + ( T / o )  
(Do/Dt) is a newly introduced term. It can be 

easily shown that g is always positive for all 

possible values of P i e  and Hb due to the inclu- 

sion of w. H;j is then determined by an elliptic 

relaxation procedure with the asymmetric MH 

operator as discussed in the previous section : 

2 2 3 Hpq h Hpq- Lt, qV Ht, q -  8 Lt, qV Lt, q. V~T~oq = H~q (30) 

Note that the summation convention is not ap- 

plied here. The original asymmetric model is 

modified to account for the anisotropy in the 

correlation function through the length scale L~a 
in each principal direction, which is given by 

Lt,,~=CL,,q~/(kS/2e-1)z+C~p,7(us/4e-l14) 2 (31) 

Coefficients Czp~ and Cvo~ are calibrated by dif- 

Table 2 Coefficients in a new composite EASM 

EASM/ER CLII=CL3n=0"4' CL'z=0"3' CL22=0"2 
C~,, = C~33 = 120. C~,~ = 130, C~22 = 150 

k - - E - - u  2 
C~=0.2, C~=80 

model 

ferential a priori tests of Eq. (30) with the present 

DNS database at Re~=135.  The SSG model is 

used as single-point correlation, i.e., the RHS of 

Eq. (30) using original constants as listed in 

Table 1. CLpq and C~pq are listed in Table 2. Also 

listed are isotropic coefficients, CL and C~ for 

Durbin's k - e - v  z model (Durbin, 1991). It is 

seen from Table 2 that the constants are a bit 

larger than those for the k - e - v  z model because 

coefficients are calibrated on asymmetric opera- 
tor. 

Required boundary conditions (Manceau & 

Hanjalic, 2002) can be imposed on the wall 

through the redistribution terms and dissipation 
rate. 

HiY-- 20u 2 uiuj e y4 , i j = 2 2 ,  12, 23 

1 w HI'Y= -2H~z ,  i j= 11, 33 (32) 

k 
HW=0,  ,~ e = 2  u-~- 

Obviously, Eq. (32) needs to be written in a gen- 

eral, frame-independent form by identifying the 

direction normal to the wall, to be applicable to 

complex geometry and multiple walls, so that this 

extension is underway. The method proposed by 

Manceau & Hanjalic (2002) may be a possible 

choice. In any event, these boundary conditions 

insure proper near-wall  limiting behavior of 

~b~j-e~. For  example, in the near-wall  budget of 
v z, (~z2-- ezz becomes 

v ~ 
~22-- e22 "~ kH22-- T e =  --  1 2 1 / 7  (33) 

However, unlike RSM, Eq. (33) does not autom- 

atically insure the correct prediction of the limi- 
ting behavior of  vzcx:y 4 because the Reynolds 

stress components modeled by EASM are not the 
solutions of differential equations but the solution 

of a system of  algebraic equations, where terms in 
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the budget of the Reynolds stress are neglected, 

decomposed and rearranged, so that it is nearly 

impossible to track the near-wall behavior of 

each component. Therefore, it should be shown 

only through the application to numerical sim- 

ulations. 

Now, the solution procedure of the nonlinear 

system given by Eq. (28) is outlined. Two ap- 

proaches are proposed to overcome remaining 

two difficulties. The first is an iterative approach 

which was originally introduced by Apsley & 

Leschziner (1998). 

Consider the general implicit system 

b = S + f ( b )  

This may be approximated iteratively by the se- 

quence 

bin=S,  b (n)=S+f(b( ' - x ) ) ,  n = l ,  2, 3, ... (35) 

If the same technique is applied to the system 

(28), we obtain:  

b (9) = - ~81S 

This is obviously a linear eddy viscosity model. 

For n =1,  we obtain from Eq. (35), 

b m= -fl ,  S+ (/~2/3'~a+2fl~/33) ( 2 1 S - ~ - I I s l )  (37) 
+/3~/3, ( W S - S W )  +B~H 

This is a quadratic NLEVM which has tensori- 

ally the same form as EASM but the inclusion of 

/]i~ term. n = 2  in Eq. (35) leads to 

b(2) = y1S q- T2( s 2 - l  I l s l  ) q- ~,a ( W S  - S W ) 

wsw},) 
-~- )+5(WS2--S2W) 

+ 7 d i + 7 7 ( I I 2 - 3 I I , + 1  ) 

+ T s ( W I I - H W )  

+,.(  < , , ,  

where 

l 2 
7x = -- ,8~ -- ~ ( fl2fl~ + 213~fl3) l~4lIs 

--2 ( fll + 3 fl~fl4) IIw 
72=2/~t/5'3, 73=,8~fl4, 74=--3,&/~4 
7s = -  (/32/~z/5'a + 2,8,/5'~ +/5',/5'4 z) 

(39) 

Here, Cayley-Hamihon theorem is applied to Si~ 

and S i j +  Wi~ and bi-quadratic terms are neg- 

lected for simplicity. This is a cubic stress-strain 

relation, and iteration is concluded at this level. 

Although it seems that too many empirical 

constants are introduced in the model given by 

Eq. (38), most of them are from the parent RSM, 

(34) pressure-strain model, scale equations, etc. They 

are well-established and verified constants among 

turbulence modeling community. Only coeffici- 

ents C,~q and C~,q in Eq. (31) are newly intro- 

duced constants in this study, but they are mere 

anisotropic variants of CL and C~ in Durbin's 

k - e - v  2 model and the Reynolds stress model 

(Durbin, 1991 ; Durbin, 1993), which share the 

same physical and mathematical meaning. 

(36) Second approach is to solve the system of 

nonlinear equations (28) numerically. The nu- 

merical solution of this system of nonlinear equa- 

tion is easily achieved by using the IMSL sub- 

routine NEQMF. The comparison between the 

above two schemes suggests that the numerical 

solution method is superior to the iteration meth- 

od in that the numerical solution approach is 

always stable and gives accurate result. However, 

if we are to retain a tensorially explicit form, the 

iteration method would be preferred. In that 

sense, the numerical solution method is not an 

"explicit" algebraic stress model since the explicit 

solutions of bij are not sought. However, if we are 

only interested in the prediction results of the 

models, the distinction between ASM and EASM 

is meaningless because these two are the same 

(38) model as shown in Section 3, and therefore it is 

only the matter of numerical efficiency. However, 

we still prefer to call the model as EASM rather 

than ASM even in view of numerical solution 

method because it is proposed as the next step to 

the existing EASMs (Gatski & Speziale, 1993; 

Taulbee, 1992) that belong to 'new-generation 
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turbulence model', so that it has a different con- 25 

text from the classical ASM by Rodi (1976). 

We will refer to the model developed in this 20 

section as EASM/ER (Explicit Algebraic Stress 

Model with Elliptic Relaxation) to emphasize the U ÷15 

elliptic relaxation procedure to obtain the pres- 

sure-redistribution terms. The model predictions 10 

of EASM/ER for a fully developed channel flow 

at -/?er= 135 are given in Figs. 8(a), 8 (b), and 5 

8(c). This is the first full numerical simulation 

without using any DNS data. The calculation is 

done with a simple one-dimensional, parabolic 

code, which adopts implicit time integration and 

2nd-order central difference for all spatial deri- 4 

vatives. The mean momentum equation and k - e  

Eq. (14) and (15), in conjunction with the re- 3 

distribution tensor Eq. (30), are solved simulta- 

neously with block-TDMA solver with the im- '~ 

plicit treatment of the boundary conditions. The 

results from GS-EASM are also shown in Figs. 8 - 

(a) and 8(b) to highlight the superiority of the 0~ 

present model, EASM/ER, in predicting wall- -1f 

bounded turbulent flows. In this simulation with 
0 

GS-EASM model, the same scale Eq. (14) and 

(15), are used in conjunction with the modified 

time scale Tdefined by Eq. (12) to make a fair 10' 

comparison with the present EASM/ER. It 

should be noted that no wall function nor dam- 10 ° 

ping function is used in the present GS-EASM 

model simulation, whereas Gatski & Speziale ~10" 

(1993) adopted the wall function for the corn- '~ 
2 putation of the rotating channel flow. E l0  

The results from EASM/ER are in excellent 

agreement for both the mean velocity and the 10 ~ 

Reynolds stress components except for small 

overprediction of uv  (in absolute values) and its 104 

gradient, which results in small underprediction 

of the mean velocity in the buffer layer. Whereas, 

those from GS-EASM highly underpredicts the Fig. 8 

mean velocity as a result of the overprediction 

of the gradients of uv.  The prediction of aniso- 

tropies in the normal components are not satis- 

factory with GS-EASM either. Note that the 

actual model prediction of GS-EASM is com- 

pletely different from those with the a priori test 

as shown in Fig. 2(a). This again reminds us that 

caution is required in interpreting the model 
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Predictions by the new composite algebraic 
stress model 

predictions from an a priori test because they are 

only conditional results provided that other 

variables, such as the mean velocity, are not 

influenced by the model prediction. Figure 8 (c) 

shows the limiting behaviors of the Reynolds 

stress. From the figure, it is clear that the model 



On Constructing an Explicit Algebraic Stress Model Without Wall-Damping Function 1537 

25 

2o 

15 

U ÷ 

lO 

5 

I 
. . . . . .  law Of tho wd  I % . / ' "  

................. ~ , ~ , ~ .  I ~ e  e~ 

!2/~ / 
10 ~ 10' 10= 10 3 y* 

(a) Mean streamwise velocity 

8 ~ 

4- 
C~ 

---= 2- 

-2 

Fig .  9 

I " 

UV 

160 260 3V~,0 4~0 5(~0 6 
# 

(b) Reynolds stress at Rer=590 
Predictions by the new composite algebraic 
stress model at higher Reynolds numbers 

predicts exact O(yZ) limiting behavior for k and 

w 2, and O(y  4) behavior for v 2. 

The model is applied to the channel flows at 

higher Reynolds numbers to check the generality 

of the model constants, which were tuned at 

Re r=135 ,  as well as the model performance 

itself. Figure 9(a) shows the mean streamwise 

velocities predicted by EASM/ER at Re~=395 

and Re~=590  in comparison with the results 

from the DNS database of Moser et al. (1998). 

Good agreements in mean velocities are also 

achieved at these higher Reynolds numbers. The 

model predictions of the Reynolds stress com- 

ponents at R e r = 5 9 0  are shown in Fig. 9(b). We 

can see again an excellent agreement with the 

DNS data. It is interesting to note that the model 

predictions get closer to the DNS results as the 

Reynolds number increases although the model is 

mainly calibrated for the low-Reynolds number 

flow. This implies the inherent capability of (E) 

ASM for capturing the stress anisotropy at the 

equilibrium state far from the wall. 

However, the solution procedure becomes 

much more complex than simple EASM because 

solving the nonlinear equations and the elliptic 

equations for each component of Ilij is obviously 

a non-trivial  job for complex flows. Therefore, 

the main virtue of EASM may be lost during this 

modification. Moreover, the model contains a bit 

t o o  many adjustable constants. However, the 

model has only finite degrees of freedom and the 

differential and algebraic model equations deter- 

mine the profile of the turbulence statistics. This 

contrasts to the infinite degrees of freedom in the 

damping function, which are used to fit the entire 

mean velocity profile. 

6. C o n c l u s i o n s  

Through the present investigation, the follow- 

ing conclusions can be drawn. 

First, EASM is proven to be the exact tensor 

representation of ASM for a two-dimensional 

flow. Therefore, PMFI can be regarded as a t o o  

restrictive constraint on the Reynolds stress. 

Second, the result of Manceau et al. (2001) that 

the pressure-velocity correlation function is 

anisotropic and asymmetric in the wall-normal 

direction, is confirmed for low-Reynolds-number 

flow. It is also confirmed that elliptic relaxation 

method plays a key role in reducing overpredic- 

tion of the pressure term in the log layer. Further 

refinement of pressure-redistribution term must 

be done in two directions: quasi-homogeneous 

model to accurately predict the one-point  cor- 

relation and the correlation function between the 

fluctuating velocity and the Laplacian of the 

pressure gradient in order to reproduce their 

anisotropy and asymmetry in a systematic way. 

Finally, a new nonlinear, composite algebraic 

stress model is proposed and tested for the 

channel flow calculation. The model shows the 

ability to predict correct near-wall behavior and 

the possibility of incorporating non-local  effect 

within the algebraic framework. However, the 
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proposed model should be applied to more com- 

plex flows, such as the flow over a backward-  

facing step for the validation of the generality of 

the model performance. It is the topic of  our 

subsequent research. 
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